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Abstract 

For call tracking system to adapt to the needs of large data processing, combined with a strong competitive advantage in recent years 

in large data processing Hadoop platform, designed and implemented a Hadoop-based call tracking data processing model, in order to 

verify its feasibility. The call tracking processing system model contains an analog data source module, data processing module, and a 

GUI interface. Analog data source module from real data samples in the simulated data, and the data is written directly to the Hadoop 

distributed file system, then using Hadoop's MapReduce model to write appropriate Mapper and Reducer function, the distributed 

processing of the data. Detailed study based on the system design and implementation, system deployment topology, hardware and 

software conditions, and designed several comparative experiments to analyze some static indicators of system performance. 
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1 Introduction 
 
With the increasingly sophisticated and popularity of the 
third-generation communication networks, the size of the 
network is drastically becoming larger and the equipment 
complexity is also greatly improved. So how to quickly 
resolve the call failure and how to ensure the quality of 
network operation becomes the most urgent task for 
network maintenance personnel. Call trace system, a new 
feature derived from signaling trace, as an important 
subsystem of the network management system, is a 
powerful mean to solve call failure problem and guarantee 
the quality of the network operation [1, 2]. 

This paper deals with the demand of large amounts of 
call tracking data. In the paper, data and environment are 
analyzed to find their impact on system performance, 
combined with Hadoop platform, which is more used 
recently in the field of large-scale data processing. A call 
tracking simulation system based on Hadoop was designed 
to simulate real application scenarios. So the analysis 
research of algorithm and the assessment of performance 
can be done. 

Hadoop is currently the most used distributed 
computing platform. The core part of the distributed 
storage system consists of HDFS and the distributed 
computing framework MapReduce. HDFS creates 
multiple copies of data blocks of replication to guarantee 
reliability. And put data blocks in the cluster's compute 
nodes, and then the application program will be broken 
down into many small tasks to realize the parallel 
processing. It processes the data block on its node where 
the data blocks are, using moving computing to substitute 
for data moving, greatly improving the efficiency. Hadoop 
is designed as a framework which can use simple 
programming model realizing distributed processing of 
large data sets with good scalability and high fault 
tolerance [3]. Streaming data access pattern is used to 
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access the storage file system. This way is suitable for 
processing large amount of data application. The 
relationship between HDFS and MapReduce is shown in 
Figure 1. 
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FIGURE 1 HDFS and MapReduce relationship Diagram 

MapReduce framework adopts a master-slave structure, 
which is composed of one JobTracker and several 
TaskTrackers. JobTracker is the master node, responsible 
for scheduling the jobs that submitted. Each job is divided 
into a number of tasks by JobTracker. Then JobTracker 
assigns tasks to TaskTrackers in the cluster. In addition, 
JobTracker will also be responsible for monitoring the 
implementation of the tasks and timely feedback to the 
user. TaskTracker is the slave node, which keeps in 
communication with the JobTracker through the heartbeat 
mechanism. It informs JobTracker its own state and 
executes the tasks that assigned by JobTracker [4]. 

The entire implementation process of MapReduce 
should include the following four parts: the submission of 
a job, assignment and execution of Map tasks, assignment 
and execution of Reduce tasks and the completion of the 
job. User configures the relevant configuration files before 
submitting the job. As soon as the job is submitted the user 
could no longer intervene, since it enters an automatic 
process. In the configuration it should ensure that there is 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao 

659 

 

at least the execution Map and Reduce code, which are 
finished by the user according to their needs. The core 
parts of MapReduce are Map operations and Reduce 
operations. 

In Map process data process is in parallel, which is to 
say the input data should be separated into several parts. 
The main function of Map is to convert the input data into 
key/value pairs [5,6]. However, Reduce puts the separated 
data generated by Map together through sorting and 
merging. Then the new key/value pairs will be generated. 
In the user's perspective, the designation of the Map and 
Reduce function is associated with the type, just as shown 
in Equation (1) and (2) below. 

( 1, 1) ( 2, 2)Map k v list k v , (1) 

Re ( 2, ( 2)) ( 2)duce k list v list v . (2) 

This association is achieved in the internal MapReduce 
programming model. The framework hides the complexity 
of the procedure. So for users, there is no difference 
between the distributed computing model system of 
MapReduce and the serial computing algorithm we usually 
use. In actual process, the input data is divided into several 
blocks. Then the blocks are randomly assigned to the data 
nodes. When a job is submitted, JobTracker will distribute 
Map and Reduce tasks to TaskTrackers according to 
TaskTrackers’ status. Generally, one data block has a 
corresponding Map task. Input data is processed by Map 
task using the user-defined Map function and converted 
into key/value pairs. Then the frame will get the 
intermediate results associated with each Reduce from the 
output of Map through HTTP, This section is called Copy 
section. There will be a sort section before Reduce task. In 
Sort section the intermediate results get by various Reduce 
will be grouped according to their keys. And then for each 
unique key, it produces the final result according to user-
defined Reduce function. Generally, it does sorts while 
doing copy. The specific implementation process of 
MapReduce is shown in Figure 2. 
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FIGURE 2 Implementation Process of MapReduce 

 

2 Design and analysis of the system 

 

In the real communication network, RNC will generate a 

large amount of call trace data. The source packets of these 

data will be generated at the specified path on the specified 

server. The data processing module will process these data 

and do further analysis for the results. In this paper, the 

process flowchart of call trace in the network management 

system is shown as Figure 3. 
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FIGURE 3 Flowchart of call trace 

RNC (Radio Network Controller) will generate UDP 

data packets in ASN.1 format. PTS (Package Transferring 

System) receives the data packets which are generated in 

RNC and then the call trace with ASN.1 coded format is 

wrote into one file according to specified time duration. 

This file is the source packet which will be handled by the 

data processing module. Then the data processing module 

will get the data packet through FTP service and generate 

the result into a CSV format file after processing. The 

results will be upload to CT (Call Trace) server and be 

stored in the database for further analysis and application 

or be called by other modules in the network management 

system. 

 

2.1 OVERVIEW 

 

The cluster scale of Hadoop is generally to be larger in 

the real application. But the hardware environment used 

in this chapter is just a DL380 Medium server and a 

DL380 Small server as our main purpose is only to verify 

the availability of call trace’s data processing. The 

configuration of these two servers is shown in Table 1. 

TABLE 1 Experimental hardware configuration 

 DL380 Medium DL380 Small 

CPU 2.93G 2*8core 2.93G 1*8core 

Memory 4*18G 2*18G 

Disk HDD 12*300G 10000rpm HDD 6*300G 10000rpm 

Network 5GB interface 5GB interface 

 

Two experimental environments (pseudo-distributed 

and small cluster) is designed using our Existing hardware 

conditions mentioned above to analysis how the 

configuration of the hardware affects the system 

performance. 

DL380 Medium server is chose for pseudo-distributed 

environment as the master node and the slaver node will 

be configured on one machine in pseudo-distributed 

environment. The network topology of the pseudo-

distributed environment is shown as Figure 4. The DL380 

is both the name node and the data node, which means it 

plays the role of JobTracker also the role of TaskTracker 

at the same time. DL380 Medium will have five daemons 

after starting Hadoop, which are JobTracker, 

SecondaryNameNode, NameNode, DataNode and 

TaskTracker respectively. 

http://dict.youdao.com/w/pair/
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FIGURE 4 Network topology of pseudo-distributed environment 

Three configuration files are needed under hadoop-

0.21.0/conf/ on the system, which are core-site.xml, hdfs-

site.xml and mapred-site.xml, respectively. The detail of 

the configuration is shown as Table 2. 

TABLE 2 configuration table of pseudo-distributed system  

Configuration file Configuration content 

core-site.xml <name>fs.defalut.name</name> 

<value>hdfs://localhost:9000</value> 

hdfs-site.xml <name>dfs.replication</name> 

<value>1</value> 

mapred-site.xml <name>Mapred.job.tracker</name> 
<value>hdfs://localhost:9001</value> 

 

Analysis of System Performance The procedure of 

data process is split into four sections and we use 

, , ,i m r oT T T T  representing the input data time, Map time, 

Reduce time and the output time. The calculation of the 

total processing time is shown in Equation (3). 

=Total i m r oT T T T T   . (3) 

In the following, three sets of comparative experiments 

are used to analyze the time of each section. All 

experiments will be made three times and then take the 

average value. 

 

2.2 COMPARATIVE EXPERIMENTS OF FULL MR 

DATA VS NON-FULL MR DATA 

 

In this part, a group of non-compressed data and pseudo-

distributed test environment are used. The specific 

information of experimental data is shown in Table 3. 

For the experimental results, the average time spent of 

various sections and the size of output file is collected. The 

specific experimental results data is shown in Table 4. 

 
TABLE 3 Full MR Vs Non-Full MR Experimental Data 

Data Type 
Number of 

Information 

Number of 

MR 

Information 

File Size 

Non-Full MR Data 6,262,800 349,943 703M  

Full MR Data 6,262,800 6,262,800 613M 

 

 

 

 

TABLE 4 Full MR Vs Non-Full MR Experimental Result 

Data Type 

Input 

file 

Time 

Map 

Time 

Reduce 

Time 

Output 

file 

Time  

All 

time 

Output 

file size 

(M) 

Non-Full 
MR 

7s 16s 9s 5s 37s 60M 

Full MR 3.7s 42s 72.3s 67s 185s 1057M 

 

It Can be seen from Table 3 the size of the two data 

packets is similar and containing the same number 

(6,262,800 pieces) of information. In the non-full MR data 

package the MR data ratio is 5.6%. So in the actual data 

process, the ratio of the number of MR information 

processed using full MR data packet and non-MR packet 

is 17.9: 1. 

 

2.3 COMPARATIVE EXPERIMENTS OF PSEUDO-

DISTRIBUTED VS SMALL CLUSTERS 

 

Different hardware environments inevitably have an 

impact on the performance of system. In theory, the cluster 

system has more hardware resources, the performance 

should be better than the pseudo-distributed test 

environment. The following set of experiments is designed 

to verify this. Four sets of Non- Compressed and Non-Full 

MR experimental data are prepared. The specific 

experimental data information is shown in Table 5. 
 

TABLE 5 Pseudo-distributed Vs small clusters experimental data 

information 

No. of 

experiment 
1 2 3 4 

Number of all the 

information 
6,262,800 12,525,600 25,040,400 50,080,800 

Number of MR 

information 
349,943 699,886 1,399,163 2,798,347 

File Size 703M 1.4G 2.8G 5.6G 

 

Set the same size of data block and start the same 

number of Reduce tasks in DL380 pseudo-distributed and 

DL380 small cluster environment and collect the statistical 

data of two experimental environments. The experimental 

result of input section is shown in Figure 5. In the pseudo-

distributed environment, all the data is copied to the local 

disk. But in the small cluster, the two servers use gigabit 

Ethernet and since the amount of data to be copied is not 

huge, so the time of input section is almost the same in the 

two experimental environments. 

The results of Map section are shown in Figure 6 and 

Figure 7. The total number of CPU cores in DL380 small 

cluster is 24, pseudo-distributed 16. So the CPU core 

number of DL380 small cluster is 50% (8 core) more than 

the pseudo-distributed test environment. In Figure 6, it can 

see that the Map section time of small cluster using DL380 

is only about 70% of the pseudo-distributed environment. 

Map efficiency is almost about 1.4 times higher than 

pseudo-distribute. That is to say, when processing the same 

data, small clusters can reduce the time of map section and 

improve the map efficiency compared to pseudo-

distributed environment. 
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FIGURE 5 Time comparison of input section 

 

The results of Map section are shown in Figure 6 and 

Figure 7. The total number of CPU cores in DL380 small 

cluster is 24, pseudo-distributed 16. So the CPU core 

number of DL380 small cluster is 50% (8 core) more than 

the pseudo-distributed test environment. In Figure 6, it can 

see that the Map section time of small cluster using DL380 

is only about 70% of the pseudo-distributed environment. 

Map efficiency is almost about 1.4 times higher than 

pseudo-distribute. That is to say, when processing the 

same data, small clusters can reduce the time of map 

section and improve the map efficiency compared to 

pseudo-distributed environment. 
 

 
 

FIGURE 6 Time comparison of map section 

 

 
 

FIGURE 7 Comparison of map’s efficiency 

 

The results of Reduce section are shown in Figure 8. 

Since the input file size and the data block size are the same, 

so the number of Map tasks started is also the same. During 

the Reduce section, it gets Maps’ intermediate results from 

the same number of Map tasks in the two environments. 

Moreover, the small cluster uses Gigabit Ethernet. So the 

Reduce time is almost the same in the two different 

environments. 
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FIGURE 8 Time comparison of reduce section 

 

The results of Output file section are shown in Figure 9. 

Since the size and content of produced result is the same, 

the time of output file section is almost the same. 

The comparison analysis of the total time to run the 

entire job is shown in Figure 10. Time spent in Input file 

section, Reduce section and Output files section is almost 

the same in pseudo-distributed environment and small 

clusters according to the analysis of the previous four 

sections. However, the small clusters uses less Map section 

time than pseudo-distributed. Therefore, small clusters 

will spend less time than pseudo-distributed while 

processing the same job. In summary, small cluster using 

Gigabit Ethernet has better performance than pseudo-

distributed environment. 

 

 

FIGURE 9 Time comparison of output section 

 

 

FIGURE 10 Time comparison of all sections 

 

2.4 COMPARATIVE EXPERIMENTS OF 

COMPRESSED AND UNCOMPRESSED DATA 

 

These sets of experiments were carried out on DL380 

small clusters. Four sets of experimental data which 

contains different number of information and includes 

compressed and uncompressed Non-Full MR were 

prepared. The specific information of the experimental 

data is shown in Table 6. 
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TABLE 6 Experimental data information of compressed and uncompressed  

No. of experiment 1 2 3 4 

Number of all the information 6,262,800 12,525,600 25,040,400 50,080,800 

Number of MR information 349,943 699,886 1,399,163 2,798,347 

File size 
Uncompressed 703M 1.4G 2.8G 5.6G 

Compression 137M 275M 549M 1.1G 

 

In this part, four sets of experimental data were 

processed in small DL380 cluster environment. The 

statistic results were collected. 

The results of Input section are shown in Figure 11. 

Time used writing file to HDFS is reduced while using 

compressed data since the size of compressed packet data 

is much smaller than the uncompressed. It can be 

calculated from Table 6 that the compression rate is about 

20%, and the writing time after compressed is just about 

20% of the uncompressed one. Therefore, compression can 

reduce the time of Input section and improve the efficiency 

of Writing file section. 
 

 

FIGURE 11 Time comparison of input section 

 

The results of Map section are shown in Figure 12 and 

13. It will start less Map tasks since for compressed file 

size of data containing same information is much smaller 

than the uncompressed. It can be seen that using 

compressed data can reduce the Map time (Except the first 

data point, since data size there is small and the 

compressed data need time to uncompress itself. So the 

advantages of compressed data in Map section won’t be 

reflected). So the compressed input data could improve the 

Map efficiency. It can be seen from Figure 12, as the input 

data size increases, The Map efficiency reduces no matter 

using compressed or uncompressed data since the input 

data size exceeds the capacity of nodes. 

 

 

FIGURE 12 Time comparison of nap section 
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FIGURE 13 Comparison of map’s efficiency 

 

3 Summary 
 
This paper describes the deployment of call trace system. 
One pseudo-distributed environment and one small cluster 
environment was implemented based on the provided 
experimental hardware. Job running process in Hadoop 
and operation process of call trace system was studied. 
According to the characteristics of the system three sets of 
experiments were designed to study how the test 
environment and the different data types impact the system 
performance. Finally, the experimental results were 

analyzed and draw the conclusion that compressed data 
and small clusters can improve the system performance 
compared to uncompressed data and pseudo-distributed 
environment. 
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