

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

658

Telecom Data processing and analysis based on Hadoop

Guofan Lu, Qingnian Zhang*, Zhao Chen

Wuhan University of Technology, Wuhan 430063,China

Received 1 October 2014, wwwcmnt.lv

Abstract

For call tracking system to adapt to the needs of large data processing, combined with a strong competitive advantage in recent years

in large data processing Hadoop platform, designed and implemented a Hadoop-based call tracking data processing model, in order to

verify its feasibility. The call tracking processing system model contains an analog data source module, data processing module, and a

GUI interface. Analog data source module from real data samples in the simulated data, and the data is written directly to the Hadoop

distributed file system, then using Hadoop's MapReduce model to write appropriate Mapper and Reducer function, the distributed

processing of the data. Detailed study based on the system design and implementation, system deployment topology, hardware and

software conditions, and designed several comparative experiments to analyze some static indicators of system performance.

Keywords: hadoop, MapReduce model, data processing, call tracking

1 Introduction

With the increasingly sophisticated and popularity of the
third-generation communication networks, the size of the
network is drastically becoming larger and the equipment
complexity is also greatly improved. So how to quickly
resolve the call failure and how to ensure the quality of
network operation becomes the most urgent task for
network maintenance personnel. Call trace system, a new
feature derived from signaling trace, as an important
subsystem of the network management system, is a
powerful mean to solve call failure problem and guarantee
the quality of the network operation [1, 2].

This paper deals with the demand of large amounts of
call tracking data. In the paper, data and environment are
analyzed to find their impact on system performance,
combined with Hadoop platform, which is more used
recently in the field of large-scale data processing. A call
tracking simulation system based on Hadoop was designed
to simulate real application scenarios. So the analysis
research of algorithm and the assessment of performance
can be done.

Hadoop is currently the most used distributed
computing platform. The core part of the distributed
storage system consists of HDFS and the distributed
computing framework MapReduce. HDFS creates
multiple copies of data blocks of replication to guarantee
reliability. And put data blocks in the cluster's compute
nodes, and then the application program will be broken
down into many small tasks to realize the parallel
processing. It processes the data block on its node where
the data blocks are, using moving computing to substitute
for data moving, greatly improving the efficiency. Hadoop
is designed as a framework which can use simple
programming model realizing distributed processing of
large data sets with good scalability and high fault
tolerance [3]. Streaming data access pattern is used to

* Corresponding author’s e-mail: 616024597@qq.com

access the storage file system. This way is suitable for
processing large amount of data application. The
relationship between HDFS and MapReduce is shown in
Figure 1.

 Data
data data data data
data data data data
data data data data

data data data data
data data data data
data data data data

data data data data
data data data data
data data data data

c

DFS Block1

Compute Cluster

DFS Block1

DFS Block1

DFS Block2

DFS Block2

DFS Block2

DFS Block3

DFS Block3DFS Block3

Map

Reduce
Map

Map

 Results
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data
data data data data

FIGURE 1 HDFS and MapReduce relationship Diagram

MapReduce framework adopts a master-slave structure,
which is composed of one JobTracker and several
TaskTrackers. JobTracker is the master node, responsible
for scheduling the jobs that submitted. Each job is divided
into a number of tasks by JobTracker. Then JobTracker
assigns tasks to TaskTrackers in the cluster. In addition,
JobTracker will also be responsible for monitoring the
implementation of the tasks and timely feedback to the
user. TaskTracker is the slave node, which keeps in
communication with the JobTracker through the heartbeat
mechanism. It informs JobTracker its own state and
executes the tasks that assigned by JobTracker [4].

The entire implementation process of MapReduce
should include the following four parts: the submission of
a job, assignment and execution of Map tasks, assignment
and execution of Reduce tasks and the completion of the
job. User configures the relevant configuration files before
submitting the job. As soon as the job is submitted the user
could no longer intervene, since it enters an automatic
process. In the configuration it should ensure that there is

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

659

at least the execution Map and Reduce code, which are
finished by the user according to their needs. The core
parts of MapReduce are Map operations and Reduce
operations.

In Map process data process is in parallel, which is to
say the input data should be separated into several parts.
The main function of Map is to convert the input data into
key/value pairs [5,6]. However, Reduce puts the separated
data generated by Map together through sorting and
merging. Then the new key/value pairs will be generated.
In the user's perspective, the designation of the Map and
Reduce function is associated with the type, just as shown
in Equation (1) and (2) below.

(1, 1) (2, 2)Map k v list k v , (1)

Re (2, (2)) (2)duce k list v list v . (2)

This association is achieved in the internal MapReduce
programming model. The framework hides the complexity
of the procedure. So for users, there is no difference
between the distributed computing model system of
MapReduce and the serial computing algorithm we usually
use. In actual process, the input data is divided into several
blocks. Then the blocks are randomly assigned to the data
nodes. When a job is submitted, JobTracker will distribute
Map and Reduce tasks to TaskTrackers according to
TaskTrackers’ status. Generally, one data block has a
corresponding Map task. Input data is processed by Map
task using the user-defined Map function and converted
into key/value pairs. Then the frame will get the
intermediate results associated with each Reduce from the
output of Map through HTTP, This section is called Copy
section. There will be a sort section before Reduce task. In
Sort section the intermediate results get by various Reduce
will be grouped according to their keys. And then for each
unique key, it produces the final result according to user-
defined Reduce function. Generally, it does sorts while
doing copy. The specific implementation process of
MapReduce is shown in Figure 2.

Split0

Split1

Split4

Split3

Split2

Map

Map

Map

Partition

Partition

Partition

Reduce

Sort&Merge

Reduce

Sort&Merge

Part0

Part1

Copy

Input HDFS

Output HDFS

FIGURE 2 Implementation Process of MapReduce

2 Design and analysis of the system

In the real communication network, RNC will generate a

large amount of call trace data. The source packets of these

data will be generated at the specified path on the specified

server. The data processing module will process these data

and do further analysis for the results. In this paper, the

process flowchart of call trace in the network management

system is shown as Figure 3.

RNC PTS

Oracle DB

APP
QoE

VoIP
QoE

Vedio
QoE

ASN.1 UDP Ftp

…

CSV fileData
Processing
Module

FIGURE 3 Flowchart of call trace

RNC (Radio Network Controller) will generate UDP

data packets in ASN.1 format. PTS (Package Transferring

System) receives the data packets which are generated in

RNC and then the call trace with ASN.1 coded format is

wrote into one file according to specified time duration.

This file is the source packet which will be handled by the

data processing module. Then the data processing module

will get the data packet through FTP service and generate

the result into a CSV format file after processing. The

results will be upload to CT (Call Trace) server and be

stored in the database for further analysis and application

or be called by other modules in the network management

system.

2.1 OVERVIEW

The cluster scale of Hadoop is generally to be larger in

the real application. But the hardware environment used

in this chapter is just a DL380 Medium server and a

DL380 Small server as our main purpose is only to verify

the availability of call trace’s data processing. The

configuration of these two servers is shown in Table 1.

TABLE 1 Experimental hardware configuration

 DL380 Medium DL380 Small

CPU 2.93G 2*8core 2.93G 1*8core

Memory 4*18G 2*18G

Disk HDD 12*300G 10000rpm HDD 6*300G 10000rpm

Network 5GB interface 5GB interface

Two experimental environments (pseudo-distributed

and small cluster) is designed using our Existing hardware

conditions mentioned above to analysis how the

configuration of the hardware affects the system

performance.

DL380 Medium server is chose for pseudo-distributed

environment as the master node and the slaver node will

be configured on one machine in pseudo-distributed

environment. The network topology of the pseudo-

distributed environment is shown as Figure 4. The DL380

is both the name node and the data node, which means it

plays the role of JobTracker also the role of TaskTracker

at the same time. DL380 Medium will have five daemons

after starting Hadoop, which are JobTracker,

SecondaryNameNode, NameNode, DataNode and

TaskTracker respectively.

http://dict.youdao.com/w/pair/

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

660

DL380

DL380 Medium
2*8 core

NameNode
JobTracker
DataNode

TaskTracker

FIGURE 4 Network topology of pseudo-distributed environment

Three configuration files are needed under hadoop-

0.21.0/conf/ on the system, which are core-site.xml, hdfs-

site.xml and mapred-site.xml, respectively. The detail of

the configuration is shown as Table 2.

TABLE 2 configuration table of pseudo-distributed system

Configuration file Configuration content

core-site.xml <name>fs.defalut.name</name>

<value>hdfs://localhost:9000</value>

hdfs-site.xml <name>dfs.replication</name>

<value>1</value>

mapred-site.xml <name>Mapred.job.tracker</name>
<value>hdfs://localhost:9001</value>

Analysis of System Performance The procedure of

data process is split into four sections and we use

, , ,i m r oT T T T representing the input data time, Map time,

Reduce time and the output time. The calculation of the

total processing time is shown in Equation (3).

=Total i m r oT T T T T   . (3)

In the following, three sets of comparative experiments

are used to analyze the time of each section. All

experiments will be made three times and then take the

average value.

2.2 COMPARATIVE EXPERIMENTS OF FULL MR

DATA VS NON-FULL MR DATA

In this part, a group of non-compressed data and pseudo-

distributed test environment are used. The specific

information of experimental data is shown in Table 3.

For the experimental results, the average time spent of

various sections and the size of output file is collected. The

specific experimental results data is shown in Table 4.

TABLE 3 Full MR Vs Non-Full MR Experimental Data

Data Type
Number of

Information

Number of

MR

Information

File Size

Non-Full MR Data 6,262,800 349,943 703M

Full MR Data 6,262,800 6,262,800 613M

TABLE 4 Full MR Vs Non-Full MR Experimental Result

Data Type

Input

file

Time

Map

Time

Reduce

Time

Output

file

Time

All

time

Output

file size

(M)

Non-Full
MR

7s 16s 9s 5s 37s 60M

Full MR 3.7s 42s 72.3s 67s 185s 1057M

It Can be seen from Table 3 the size of the two data

packets is similar and containing the same number

(6,262,800 pieces) of information. In the non-full MR data

package the MR data ratio is 5.6%. So in the actual data

process, the ratio of the number of MR information

processed using full MR data packet and non-MR packet

is 17.9: 1.

2.3 COMPARATIVE EXPERIMENTS OF PSEUDO-

DISTRIBUTED VS SMALL CLUSTERS

Different hardware environments inevitably have an

impact on the performance of system. In theory, the cluster

system has more hardware resources, the performance

should be better than the pseudo-distributed test

environment. The following set of experiments is designed

to verify this. Four sets of Non- Compressed and Non-Full

MR experimental data are prepared. The specific

experimental data information is shown in Table 5.

TABLE 5 Pseudo-distributed Vs small clusters experimental data

information

No. of

experiment
1 2 3 4

Number of all the

information
6,262,800 12,525,600 25,040,400 50,080,800

Number of MR

information
349,943 699,886 1,399,163 2,798,347

File Size 703M 1.4G 2.8G 5.6G

Set the same size of data block and start the same

number of Reduce tasks in DL380 pseudo-distributed and

DL380 small cluster environment and collect the statistical

data of two experimental environments. The experimental

result of input section is shown in Figure 5. In the pseudo-

distributed environment, all the data is copied to the local

disk. But in the small cluster, the two servers use gigabit

Ethernet and since the amount of data to be copied is not

huge, so the time of input section is almost the same in the

two experimental environments.

The results of Map section are shown in Figure 6 and

Figure 7. The total number of CPU cores in DL380 small

cluster is 24, pseudo-distributed 16. So the CPU core

number of DL380 small cluster is 50% (8 core) more than

the pseudo-distributed test environment. In Figure 6, it can

see that the Map section time of small cluster using DL380

is only about 70% of the pseudo-distributed environment.

Map efficiency is almost about 1.4 times higher than

pseudo-distribute. That is to say, when processing the same

data, small clusters can reduce the time of map section and

improve the map efficiency compared to pseudo-

distributed environment.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

661

FIGURE 5 Time comparison of input section

The results of Map section are shown in Figure 6 and

Figure 7. The total number of CPU cores in DL380 small

cluster is 24, pseudo-distributed 16. So the CPU core

number of DL380 small cluster is 50% (8 core) more than

the pseudo-distributed test environment. In Figure 6, it can

see that the Map section time of small cluster using DL380

is only about 70% of the pseudo-distributed environment.

Map efficiency is almost about 1.4 times higher than

pseudo-distribute. That is to say, when processing the

same data, small clusters can reduce the time of map

section and improve the map efficiency compared to

pseudo-distributed environment.

FIGURE 6 Time comparison of map section

FIGURE 7 Comparison of map’s efficiency

The results of Reduce section are shown in Figure 8.

Since the input file size and the data block size are the same,

so the number of Map tasks started is also the same. During

the Reduce section, it gets Maps’ intermediate results from

the same number of Map tasks in the two environments.

Moreover, the small cluster uses Gigabit Ethernet. So the

Reduce time is almost the same in the two different

environments.

DL380 VS DL380 Cluster(KM）Using Uncompreesed Data - Input file time

0

10

20

30

40

50

60

70

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

In
pu
t
fi
le
 t
im
e(
s)

DL380 Uncompressed Input
file time(s)

DL380 Cluster Uncompreesed
Input file time(s)

DL380 VS DL380 Cluster(KM）Using Uncompreesed Data - Map time

0
20
40
60
80
100
120
140
160

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

Ma
p
ti
me
(s
) DL380 Uncompreesed Map

time(s)

DL380 Cluster Uncompreesed
Map time(s)

DL380 VS DL380 Cluster(KM）Using Uncompreesed Data - Map efficiency

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

Ma
p
ef
fi
ci
en
cy

DL380 Uncompreesed
Density(Message/s/map)

DL380 Cluster Uncompreesed
Density(Message/s/map)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

662

FIGURE 8 Time comparison of reduce section

The results of Output file section are shown in Figure 9.

Since the size and content of produced result is the same,

the time of output file section is almost the same.

The comparison analysis of the total time to run the

entire job is shown in Figure 10. Time spent in Input file

section, Reduce section and Output files section is almost

the same in pseudo-distributed environment and small

clusters according to the analysis of the previous four

sections. However, the small clusters uses less Map section

time than pseudo-distributed. Therefore, small clusters

will spend less time than pseudo-distributed while

processing the same job. In summary, small cluster using

Gigabit Ethernet has better performance than pseudo-

distributed environment.

FIGURE 9 Time comparison of output section

FIGURE 10 Time comparison of all sections

2.4 COMPARATIVE EXPERIMENTS OF

COMPRESSED AND UNCOMPRESSED DATA

These sets of experiments were carried out on DL380

small clusters. Four sets of experimental data which

contains different number of information and includes

compressed and uncompressed Non-Full MR were

prepared. The specific information of the experimental

data is shown in Table 6.

DL380 VS DL380 Cluster(KM）Using Uncompreesed Data - Reduce time

0
10
20
30
40
50
60
70
80

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

Re
du
ce
 t
im
e(
s) DL380 Uncompreesed Reduce

time(s)

DL380 Cluster Uncompreesed
Reduce time(s)

DL380 VS DL380 Cluster(KM）Using Uncompreesed Data - Output file time

0

2

4

6

8

10

12

14

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

Ou
tp
ut
 f
il
e
ti
me
(s
)

DL380 Uncompreesed Output
file time(s)

DL380 Cluster Uncompreesed
Output file time(s)

DL380 VS DL380 Cluster(KM) Using Uncompressed Data - All time

0

50

100

150

200

250

300

350

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

A
l
l

t
i
m
e
(
s
) DL380 Uncompressed All

time(s)

DL380 Cluster Uncompressed
All time(s)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

663

TABLE 6 Experimental data information of compressed and uncompressed

No. of experiment 1 2 3 4

Number of all the information 6,262,800 12,525,600 25,040,400 50,080,800

Number of MR information 349,943 699,886 1,399,163 2,798,347

File size
Uncompressed 703M 1.4G 2.8G 5.6G

Compression 137M 275M 549M 1.1G

In this part, four sets of experimental data were

processed in small DL380 cluster environment. The

statistic results were collected.

The results of Input section are shown in Figure 11.

Time used writing file to HDFS is reduced while using

compressed data since the size of compressed packet data

is much smaller than the uncompressed. It can be

calculated from Table 6 that the compression rate is about

20%, and the writing time after compressed is just about

20% of the uncompressed one. Therefore, compression can

reduce the time of Input section and improve the efficiency

of Writing file section.

FIGURE 11 Time comparison of input section

The results of Map section are shown in Figure 12 and

13. It will start less Map tasks since for compressed file

size of data containing same information is much smaller

than the uncompressed. It can be seen that using

compressed data can reduce the Map time (Except the first

data point, since data size there is small and the

compressed data need time to uncompress itself. So the

advantages of compressed data in Map section won’t be

reflected). So the compressed input data could improve the

Map efficiency. It can be seen from Figure 12, as the input

data size increases, The Map efficiency reduces no matter

using compressed or uncompressed data since the input

data size exceeds the capacity of nodes.

FIGURE 12 Time comparison of nap section

DL380 Cluster(KM) Compressed VS Uncompressed - Input file time

0

10

20

30

40

50

60

70

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

In
pu
t
fi
le
 t
im
e(
s)

DL380 Cluster Uncompressed
Input file time(s)

DL380 Cluster Compressed
Input file time(s)

DL380 Cluster(KM) Compressed VS Uncompressed - Map time

0

20

40

60

80

100

120

6,262,800 12,525,600 25,040,400 50,080,800

Number of messages

Ma
p
ti
me
(s
) DL380 Cluster Uncompressed

Map time(s)

DL380 Cluster Compressed
Map time(s)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 658-664 Lu Guofan, Zhang Qingnian, Chen Zhao

664

FIGURE 13 Comparison of map’s efficiency

3 Summary

This paper describes the deployment of call trace system.
One pseudo-distributed environment and one small cluster
environment was implemented based on the provided
experimental hardware. Job running process in Hadoop
and operation process of call trace system was studied.
According to the characteristics of the system three sets of
experiments were designed to study how the test
environment and the different data types impact the system
performance. Finally, the experimental results were

analyzed and draw the conclusion that compressed data
and small clusters can improve the system performance
compared to uncompressed data and pseudo-distributed
environment.

Acknowledgements

The authors are grateful for the support from the National
Science Foundation of China (51479159) and the Soft
Science Project of China’s Ministry of Transport (2013-
322-811-470).

References

[1] Tian C, Zhou H, He Y, Zha L 2009 A Dynamic MapReduce
Scheduler for Heterogeneous Workloads [C] Eighth International
Conference on Grid and Cooperative Computing 218-24

[2] Lu P, Lee Y C, Wang C, Zhou B B, Chen J, Zomaya A Y 2012
Workload Characteristic Oriented Scheduler for MapReduce [C]
IEEE 18th International Conference on Parallel and Distributed
Systems 156-63

[3] Nguyen P, Simon T, Halem M, Chapman D, Le Q 2012 A Hybrid
Scheduling Algorithm for Data Intensive Workloads in a
MapReduce Environment [C] IEEE/ACM Fifth International
Conference on Utility and Cloud Computing 161-7

[4] Liu L, Zhou Y, Liu M, Xu G, Chen X, Fan D, Wang Q 2012
Preemptive Hadoop Jobs Scheduling under a Deadline [C] Eighth
International Conference on Semantics, Knowledge and Grids 72-9

[5] Kamal Kc, Kemafor Anyanwu 2010 Scheduling Hadoop Jobs to
Meet Deadlines [C] IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom) 388-92

[6] Yang S-J, Chen Y-R, Hsien Y-M 2012 Design Dynamic Data
Allocation Scheduler to Improve MapReduce Performance in
Heterogeneous Clouds [C] Nineth IEEE International Conference on
e-Business Engineering 265-70

[7] Matei Z, Dhruba B, Joydeep Sen S, Khaled E, Scott S, Ion S 2010
Delay Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling [C] 5th European conference on
Computer systems 265-78

Authors

Lu Guofeng, was born in 1966, Jilin, China

Current position, grades: PhD candidate in Transportation planning and management in Wuhan University of Technology, Wuhan, China.
University studies: BSc in Highway and Bridge from Harbin University of Civil Engineering and Architecture, China, in 1993, MSc degree in traffic
management from Jilin University in 2012.
Scientific interest: traffic and transportation planning and transportation safety management etc.

Zhang Qingnian was born in 1957, Xi’an, China.

Current position, grades: professor of School of Transportation at Wuhan University of Technology.
University studies: PhD degree in Machinery design and theories from the Wuhan University of Technology, China, in 2002.
Scientific interest: traffic and transportation planning, optimization and decision making of transportation system, transportation safety
management.

Chen Zhao was born in 1969, Shaanxi Province, China.

Current position, grades: PhD candidate in Logistics management at Wuhan University of Technology.
University studies: BSc in Chinese language and Literature from China people's Police University, Beijing, China in 1992, MSc in Transportation
management engineering from Wuhan University of Technology, China, in 2002
Scientific interest: parallel computing on Hadoop platform, optimization decision.

DL380 Cluster(KM) Compressed VS Uncompressed - Map efficiency

0

20,000

40,000

60,000

80,000

100,000

120,000

6,262,800 25,040,400

Number of messages

Ma
p
ef
fi
ci
en
cy

DL380 Cluster Uncompressed
Density(Message/s/map)

DL380 Cluster Compressed
Density(Message/s/map)

